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Abstract: The choroid is the vascular layer of the eye that supplies photoreceptors with oxygen.
Changes in the choroid are associated with many pathologies including myopia where the
choroid progressively thins due to axial elongation. To quantize these changes, there is a need to
automatically and accurately segment the choroidal layer from optical coherence tomography
(OCT) images. In this paper, we propose a multi-task learning approach to segment the choroid
from three-dimensional OCT images. Our proposed architecture aggregates the spatial context
from adjacent cross-sectional slices to reconstruct the central slice. Spatial context learned by
this reconstruction mechanism is then fused with a U-Net based architecture for segmentation.
The proposed approach was evaluated on volumetric OCT scans of 166 myopic eyes acquired
with a commercial OCT system, and achieved a cross-validation Intersection over Union (IoU)
score of 94.69% which significantly outperformed (p<0.001) the other state-of-the-art methods
on the same data set. Choroidal thickness maps generated by our approach also achieved a better
structural similarity index (SSIM) of 72.11% with respect to the groundtruth. In particular, our
approach performs well for highly challenging eyes with thinner choroids. Compared to other
methods, our proposed approach also requires lesser processing time and has lower computational
requirements. The results suggest that our proposed approach could potentially be used as a fast
and reliable method for automated choroidal segmentation.

© 2021 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

The choroid is the vascular layer between the sclera and the retina which plays an important role in
transporting oxygen and nutrients to the eye outer retina including the photoreceptors. [1] Many
eye diseases such as myopia and age-related macular degeneration (AMD), have been associated
with choroidal changes. [2–8] Studies have been conducted through the use of non-invasive
imaging techniques to acquire images of the subject’s retina so as to investigate the choroidal
changes in these images. [2] For example, choroidal thinning is associated with myopia and
axial elongation. [9] Many studies in myopia showed this correlation with sub-foveal choroidal
thickness changes. [3–5] Flores-Moreno et al. [5] reported that in eyes with high myopia, a
millimeter increase in the axial length was associated with a choroid thickness decrease of
25.9µm ± 2.1µm. Other examples of eye conditions associated with choroidal layer changes
are AMD [6], where the choroid thickness has been shown to be correlated with severity of
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non-exudative macular changes [7], and Diabetic Retinopathy (DR) where increasing thickness
of the choroid was shown to be correlated with severity of retinopathy [8]. These studies have
demonstrated the importance of detecting and monitoring changes in the choroid.

Optical Coherence Tomography (OCT) is an interferometric technique which uses low-
coherence light to allow high-resolution, cross-sectional tomographic imaging of tissue. [10]
This non-invasive optical imaging technique has been widely adopted in ophthalmic practice and
research to allow visualization and quantification of the structures in the eye. A challenge in
OCT imaging is the limited penetration depth due to multiple scattering effects in retinal tissue.
Recent swept-source OCT systems have used longer wavelengths, which are less susceptible to
scattering and allow deeper penetration depths. However, the visibility of the outer boundary of
the choroid remains relatively poorer compared to the other retinal layers.

Segmentation of the choroid in OCT is important to enable detailed analysis of the choroidal
layers. [11] However, as manual segmentation of the choroid is labour-intensive and time
consuming, there is an interest in developing automated segmentation approaches. Zhang et al.
[12] used multiscale Hessian matrix analysis and thresholding for choroidal vessel detection
and segmentation, while Mazzaferri et al. [13] and Hu et al. [14] used a graph search approach
for choroid layer segmentation. Recently, deep-learning based approaches have gained great
interest in medical image segmentation and have demonstrated better performance than traditional
image-processing approaches. U-Net [15] is an approach that was developed for the segmentation
of biomedical images. Although it has been well demonstrated on 2D medical data [16], [17], the
conventional U-Net approach cannot be directly used on volumetric 3D data. A typical strategy
is to segment each cross-sectional slice independently of the other slices, and then combine
the segmentations to generate a 3D outcome. However, as the segmentations are performed
independently, the amalgamated volumetric result can appear disjointed as inter-slice information
and continuities are not considered. 3D U-Net [18] addresses this issue by performing a series of
3D convolutional operations on sub-blocks of a volumetric image. Other methods such as V-Net
[19] and 3D Deep Supervision Network (3D DSN) [20] also addressed this issue in a similar
way using 3D convolution networks. However, these methods require extensive computational
memory. While this can be addressed by using Recurrent Neural Networks (RNNs) based
approaches to consider volumetric medical images as sequential frames for segmentation, this is
computationally intensive and prone to memory leakages.

Motivated by the above observations, we introduce a multi-task learning approach for
segmentation of the choroid. Inter-slice spatial information is extracted as a separate task, which
is used to reconstruct a slice and segment a target slice. Experiments on a large dataset of
volumetric OCT images from a high myopia cohort show that our proposed approach achieves
better choroid segmentation with reduced computation complexity. The rest of this paper is
organized as follows: Section 2 reviews related works; Section 3 describes the proposed approach;
Section 4 describes the experimental results, and Section 5 concludes the paper.

2. Related works on segmentation

Medical image segmentation plays an essential role in computer-aided diagnosis systems in
different clinical applications [21–24] and many automated segmentation approaches have
been developed to delineate region-of-interests for clinical evaluation and diagnosis. The most
commonly used convolutional neural network (CNN) architecture for segmentation of two-
dimensional(2D) medical images is U-Net [15]. Due to its ability to segment images efficiently
with limited amount of training data, the U-Net architecture has been successfully demonstrated
in different fields including brain and liver 2D image segmentation. Volumetric segmentation
can be performed using U-Net by applying the approach on cross-sectional slices individually,
from which the segmentations are amalgamated. For example, CorneaNet [17] is an architecture
based on 2D U-Net to perform segmentation of the cornea. Çiçek et al. [18] proposed a 3D
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variant of U-Net. A similar approach was also proposed by Milletari et al. [19] in developing
V-Net. The main difference between3D U-Net and V-Net is that V-Net incorporated local residual
architecture in addition to skip connections in each block. 3D Deep Supervision Network (3D
DSN) was developed by Dou et al. [20] for volume-to-volume segmentation by combining 3D
convolutional networks with a deep supervision mechanism. However, these approaches usually
require the whole volumetric image to be considered, which is computationally expensive with
extensive memory requirements. This memory issue can be solved by passing sub-volumes to the
architecture instead of the whole volume at the same time. However, this results in discontinuities
when we perform volumetric reconstruction from the sub-blocks.

Recently, recurrent networks have been gaining popularity as a sequential approach for
volumetric medical image segmentation. Chen et al. [25] and Tseng et al. [26] proposed a
combination of FCN (Fully Convolutional Networks) and RNN (Recurrent Neural Networks).
However, the inputs to these networks were still based on the full volumetric image. To address
this issue, a hybrid combination of sequential processing with 2D segmentation in medical
images was proposed by Poudel et al. [27] and Novikov et al. (Sensor3D) [28]. These methods
are computationally intensive and are also prone to memory leakages, which are common in
recurrent networks. Cahyo at al. [29] addressed the problem of memory leakage by changing the
time distributed layers in Sensor3D using a 3D convolution approach. However, this approach
was still computationally expensive.

D-UNet, which was proposed by Zhou et al. [30], learnt spatial context from adjacent slices
during the encoding stage using 3D convolution, which was combined with 2D segmentation that
considered the adjacent slices as different channels. Fang et al. [31] also proposed learning spatial
context in the same manner using a Globally Guided Progressive Fusion Network (GGPF-Net).
GGPF-Net locally learnt spatial context from patched neighbouring slices, which was then
combined with the globally learnt features from the central slice in the bottleneck. These methods
outperformed sequential and 3DFCN approaches in terms of performance and computation
efficiency.

Other approaches have included an end-to-end multi-task learning that incorporated an attention
module to learn specific-task features proposed by Liu et al. [32] and a multi-task learning
architecture to reconstruct the foreground and background of the segmentation labels proposed
by Chen et al. [33]. Other architectures have also integrated Generative Adversarial Networks
(GAN) into the segmentation architecture, such as proposed by Xu et al. [34] and Zhao et al.
[35].

Fig. 1. Schematic diagram of the proposed SA-Net. SA-Net learns spatial information from
two or more adjacent slices and infuse the spatial information to segmentation task.
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Compared to these previous approaches, we propose a novel multi-task learning architecture
that learns the spatial information between adjacent slices to reconstruct a selected central slice.
We use hard parameter sharing to channel the spatial information between the reconstruction
and segmentation tasks. This mechanism makes the model aggregate the spatial features more
explicitly since it directly learns the correlation between adjacent slices and the slice that
will be segmented. We name this architecture Spatial Aggregated Networks (SA-Net) due to
its aggregation of spatial information. Figure 1 shows a schematic view of SA-Net. Spatial
context-infused segmentation of each cross-sectional slice is first performed, after which the
segmentations are used to construct a volumetric representation of the choroid.

3. Methods

The proposed SA-Net architecture incorporates both reconstruction and segmentation tasks. Hard
parameter sharing, which is a commonly used technique in multi-task learning architecture to
share feature extractor layers, is used because the two tasks require two different inputs, which are
co-dependent. This allows the reconstruction task to learn to extract useful spatial features which
are shared with the segmentation task. As illustrated in Fig. 1 the segmentation branch performs
the 2D segmentation and concurrently, the spatial information extracted from the adjacent
slices in the reconstruction branch is infused with the segmentation branch by element-wise
addition. Specifically, given a slice, Ii, to be segmented, the reconstruction branch will take
∧ = {Ii−n, Ii+n} for its input whereby n defines the appropriate distance of adjacent slices to
be used. In this paper we used n = 5 after hyperparameter tuning. For both reconstruction and
segmentation branch, we used batch normalization for regularization in each block as shown in
Fig. 2 which can speed up the training and avoid convergence issues [36].

3.1. Reconstruction branch

As shown in Fig. 2, the reconstruction branch can be divided into down-sampling and up-sampling
parts. In the down-sampling part, we exploit the rich spatial information from adjacent slices by
using 3D convolution and max pooling layers to reduce the features tensor size. This part of the
branch enables the architecture to learn local spatial information contained between slices, which
are the inter-slice features. To reduce the number of parameters required by 3D convolution
layers, we incorporate dimension reduction mechanism (DRM) in the bottleneck block to convert
3D information into 2D information. The converted 3D information is up-sampled using
up-sampling layers and 2D convolution layers in the up-sampling part. DRM is also used in the
skip connections in the up-sampling part, then the dimensionally squeezed features tensors are
concatenated to their corresponding up-sampling layers.

DRM starts with a 3D convolution layer, followed by summing the numerical features along
the cross-sectional axis, batch normalization and Rectified Linear Unit (ReLU) activation. This
mechanism ensures that the features of the volumetric nature of adjacent slices are retained and
at the same time scaled or normalized. Meanwhile, the dimensionality of the tensor is squeezed
and the complexity of the reconstruction branch is reduced with increasing converging speed.

After up-sampling, a final 2D convolution is performed and the loss between output and the
groundtruth (the Ii slice) is calculated. We used mean squared error to calculate the similarity
distance between the predicted output (ypred) and groundtruth (ytrue).

Lreconst =
1

MN

M∑︂
i=1

N∑︂
j=1

[︂
ypred

i,j − ytrue
i,j

]︂2
(1)

3.2. Segmentation branch

The segmentation branch takes the corresponding slice to be segmented as the input. A series
of 2D convolution operations followed by max-pooling are performed in the down-sampling
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Fig. 2. The proposed SA-Net consists of reconstruction and segmentation branches for two
different tasks to learn inter-slice and intra-slice features respectively. Spatial information
aggregated in reconstruction branch is fused with the segmentation branch during the
encoding stage.

part to extract intra-slice features contained within the slice and reduce the features tensor size.
In the up-sampling part, we concatenate high-resolution features during down-sampling with
low-resolution features.

Each up-sampling block consists of one 2D up-sampling layer and two 2D convolution
layers. At each end of these blocks, we fused the knowledge of the inter-slice features from the
reconstruction branch. The high-resolution 2D volumetric features are summed with the 2D
intra-slice extracted features using element-wise addition to incorporate the inter-correlation
features between slices.

The up-sampling branch is ended with a 1×1 2D convolution and a sigmoid activation function.
We used 2D Intersection over Union (IoU) loss function to maximize the intersection region
between the predicted probability map and the groundtruth, as defined in Eq. (2)

LIoU = 1 −

∑︁
i,j∈N ypred

i,j ytrue
i,j∑︁

i,j∈N ypred
i,j + ytrue

i,j − ypred
i,j ytrue

i,j

(2)

Given the maximized probability map of the segmentation, ypred, we threshold this predicted
probability map to get the final segmentation result.

yseg
i,j =

⎧⎪⎪⎨⎪⎪⎩
0, 1 − ypred

i,j ≥ δ

1, 1 − ypred
i,j <δ

(3)

where yseg, ypred and δ are the segmentation result, probability map and threshold value respectively.
In this paper we used a threshold value 0.5.
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3.3. Training

Hard parameter sharing is used in this architecture. Instead of constraining layers with regulariza-
tion in the loss function (soft parameter sharing), during backpropagation, parameters are shared
between the two branches during training. The loss function used is the combination of Eq. (1)
and Eq. (2).

L(ypred ∪ yrec|W) = L(yrec|Wrec) + L(ypred |Wrec ∪ Wseg) (4)

This loss function allows us to update the weights in the reconstruction branch that is also
useful for the segmentation task while keeping the weights updated in the segmentation branch to
only focus on the segmentation task. This is important to keep the multi-task learning architecture
focused on segmentation.

3.4. Data acquisition

In this paper we evaluated SA-Net on a high myopia dataset. The high myopia data set was
composed of 166 high myopia eyes acquired using a commercial swept-source OCT (SS-OCT)
system from 99 patients with refractive error of −5.18 ± 2.21 D, DRI OCT Triton (Topcon Corp.,
Japan) with a 1050 nm wavelength, scanning speed of 100,000 A-scans/sec and 7 mm × 7 mm
scanning protocol, centered at the macula. Each volumetric image contains 256 cross-sectional
with dimensions 256 × 128 pixels. The SingHealth Centralized Institutional Review Board
approved all protocols, and all methods adhered to the tenets of the Declaration of Helsinki.

We generated the groundtruth for Triton datasets by manual annotation graded by one trained
grader. The choroid was determined by evaluating the boundary between the choroid and the
RPE layer as well as the choroid tissue with the sclera.

After resizing and normalization, the customized data generator produced two inputs: a target
slice and its adjacent slices. The network received the target slice for segmentation together with
the adjacent slices as inputs for reconstruction. Slices from the ends of the volume are padded by
averaging the target slice with the available adjacent slices.

3.5. Experimental design

We used a five-fold cross-validation strategy to train and evaluate the proposed model. Stratified
sampling was done over the choroidal volume for each fold to ensure that a similar distribution
was achieved and to avoid dataset bias. To further avoid training bias and risk of overfitting, we
ensured that all images from the same eye were in the same fold. This avoids a scenario where
the testing and training partitions could potentially consist of different images from the same eye.
The overall experimental result was then obtained by averaging over all validation sets in each
fold.

The results obtained from our proposed SA-Net architecture was compared with five architec-
tures, namely 2D U-Net [15], 3D U-Net [18], BC U-Net [29], Sensor3D [28]. These architectures
were trained for 20 epochs with early stopping that will stop the training if the validation loss is
not decreasing anymore. Hyperparameters tuning was done for all five architectures, to ensure
best performance for individual architectures. Specifically for SA-Net we used batch size equals
5, with image dimension 256 × 128, filter size of 3 × 3 and individual number of filters of [16,32,
64, 128, 256] (increasing in the downsampling blocks and decreasing in the upsampling blocks).
We trained these architectures using Adam [37] with a fixed initial learning rate of 0.001.

The architecture was implemented using Python version3.7.4 and TensorFlow [38] version 2.0
on a workstation with GPU NVIDIA RTX 2080Ti and 64GB RAM.
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3.6. Evaluation metrics

We evaluated the segmentation result volumetrically by calculating the IoU and Dice score with
respect to the groundtruth segmentation.

IoU =

∑︁
i,j,k∈N yseg

i,j,ky
true
i,j,k∑︁

i,j,k∈N yseg
i,j,k + ytrue

i,j,k − yseg
i,j,ky

true
i,j,k

(5)

Dice =
2 ×

∑︁
i,j,k∈N yseg

i,j,ky
true
i,j,k∑︁

i,j,k∈N yseg
i,j,k + ytrue

i,j,k
(6)

These metrics measure the performance of the segmentation result over the groundtruth and
thus, the ability to differentiate the object from the background, where yseg is the segmentation
result as defined in Eq. (3).

We also assessed the inter-slice segmentation by using the choroidal thickness map generated
from the choroidal segmentation. The choroidal thickness map was obtained by summing the
enface thickness of the detected choroidal layer as shown in Fig. 3. We evaluated the generated
map by calculating the SSIM, which assesses the similarity of the predicted thickness map and
groundtruth thickness map. Given two images with the same dimension, x and y, SSIM formula
is given by Eq. (7). [39]

SSIM =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ

2
y + c1)(σ

2
x + σ

2
y + c2)

(7)

where µx, µy, σx, σy, σxy are the average of x, the average of y, the variance of x, the variance of
y, and the covariance of x and y respectively. While c1 = (0.01DR)2 and c2 = (0.03DR)2 with
DR or dynamic range is defined by:

DR = max(ytrue
thickness map) − min(ytrue

thickness map) (8)

Fig. 3. Reconstructed volumetric representation of choroid segmentation. A choroidal
thickness map can be generated by measuring the choroidal thickness at each A-scan across
the image.

To evaluate the performance comparison between architectures, paired t-test were used for
each individual volume. In this paper, p-value below 0.05 is considered to be significant.
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4. Experiment results

4.1. Results

Table 1 shows the result of volumetric choroidal segmentation. Results of the segmentations from
other approaches are also presented in Table 1 for comparison. Except for SSIM, the average
IoU, and the Dice score were measured volumetrically using Eq. (5) and Eq. (6). The volumetric
IoU and Dice scores indicate that SA-Net achieved significantly better segmentations (p<0.001)
compared to other approaches.

Table 1. Results for Volumetric Choroidal Segmentation on the Triton High
Myopia Dataset.a

Method IoU Dice SSIM Time/Vol(s)

SA-Net 0.9469± 0.0261 0.9725± 0.0142 0.7211± 0.0672 1.0812

2D U-Net 0.9342± 0.0306# 0.9657± 0.0168# 0.6924± 0.0658# 0.2882

3D U-Net 0.9251± 0.0321# 0.9608± 0.0179# 0.6679± 0.0759# 0.6533

BC U-Net 0.9416± 0.0299# 0.9697± 0.0164# 0.7108± 0.0637# 3.1000

Sensor3D 0.9431± 0.0285# 0.9705± 0.0156# 0.6975± 0.0671# 1.9390

aPaired t-tests were used to evaluate if differences were significant;
* and # indicate p-value < 0.05 and p-value < 0.001.

It can also be observed that the SSIM performance for SA-Net significantly (p<0.001)
outperformed BC U-Net, which shows that both approaches were able to generate thickness maps
which were close to that of the groundtruth. However, SA-Net also required less time for training
and inference compared to BC U-Net due to the reduced network complexity and computational
requirements. The upper and lower boundary error was measured and also shown in Table 2. We
can see that SA-Net outperformed all of the other architectures, although only by small margin
with respect to Sensor3D architecture.

Table 2. Upper and Lower Boundary Error for Volumetric Choroidal Segmentation on the
Triton High Myopia Dataset.a

Method Mean Absolute Upper Boundary Error(mm) Mean Absolute Lower Boundary Error(mm)

SA-Net 0.0022± 0.0014 0.0103± 0.1172

2D U-Net 0.0037± 0.0019# 0.0121± 0.0141#

3D-U-Net 0.0047± 0.0019# 0.0124± 0.0078#

BC U-Net 0.0025± 0.0015# 0.0109± 0.0094*

Sensor3D 0.0023± 0.0016 0.0106± 0.0061

aPaired t-tests were used to evaluate if differences were significant;
* and # indicate p-value < 0.05 and p-value < 0.001.

Figure 4 shows the examples of the 2D cross-sectional segmentation result for each architecture,
where the red line indicates the segmentation result and the green line is the groundtruth. It can
be observed that cross-sectional segmentation of the choroid using SA-Net is better than that
from the other architectures and generates a smoother segmentation result.

Figure 5 shows the choroidal thickness map generated from the groundtruth and various
segmentation approaches. We observed that the thickness map from the 2D U-Net is more
noisy with higher variability between slices, while the patch-based 3D U-Net resulted in a more
patchy result with discontinuities (indicated by the black arrows) between patches (sub-volumes).
BC U-Net, Sensor3D, and SA-Net showed results, which were more similar to the groundtruth.
SA-Net was shown to perform significantly better than other approaches for the SSIM score as
shown in Table 1, and by visual comparison with the groundtruth choroidal thickness map.
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Fig. 4. Comparison of choroidal segmentation in cross-sectional images using different
approaches. Green and red lines indicate groundtruth and segmentation, respectively. The
choroidal segmentation using SA-Net can be observed to be closer to the other approaches.

Fig. 5. Choroid layer thickness map for each architectures. SA-Net shows the most similar
result with the groundtruth. The quantitative similarity is calculated using SSIM. X and
Y axes indicate image dimension in pixel, while the colorbars indicate the thickness in
millimeters.

Although the results show that the proposed SA-Net outperforms other segmentation approaches,
a limitation of the results is that an independent test set was unavailable for testing. However, the
same-folds were used for all methods, and hyperparameter tuning was performed to optimize
each of the architectures.

4.2. Evaluation on various choroid thickness level

In eyes with more severe myopia, the thinned choroids can present a challenge and may be
more difficult to segment than thicker choroids. To assess if choroidal thickness affected the
performance of SA-Net, we divided the Triton dataset based on their sub-foveal choroidal
thickness, which is defined as the choroidal thickness below fovea. Tan et al. [40] defined eyes
with a sub-foveal thickness of less than 300 µm as thin choroids, while intermediate choroids
were those with choroidal thickness between 301µm − 400µm inclusive. Using these criteria, we
considered the analysis separately for 126 thin choroids and 40 intermediate choroids.

Figure 6 depicts an example of the segmentation results for images with thin and intermediate
choroids. Generally, segmentation of the thin choroids is more difficult than intermediate choroids
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due to the thinner choroidal profiles and higher variation in the choroidal visibility. SA-Net
showed good performance across both choroid thickness types.

Fig. 6. Example choroidal segmentation results on cross-sectional images from eyes with
thin and intermediate choroid thickness. Green and red lines indicate groundtruth and
segmentations respectively. The results show that SA-Net achieved a better segmentation of
thin choroids. In intermediate choroids, the segmentations were more similar.

In Table 3 and Table 4 we can see the performance comparisons thin and intermediate choroids
separately. SA-Net performed significantly better (p<0.001) compared to the other architectures
for thin choroids. For intermediate choroids, although SA-Net performed significantly better
(p<0.05) than the other approaches, the differences in the segmentation performance was smaller
compared to the thin choroids.

Table 3. Results for Volumetric Choroidal Segmentation for Thin
Choroids.a

Method IoU Dice SSIM

SA-Net 0.9431± 0.0315 0.9705± 0.0171 0.7133± 0.0739

2D U-Net 0.9288± 0.0370# 0.9628± 0.0205# 0.6870± 0.0738#

3D U-Net 0.9188± 0.0387# 0.9574± 0.0216# 0.6530± 0.0860#

BC U-Net 0.9379± 0.0356# 0.9677± 0.0196# 0.7039± 0.0704#

Sensor3D 0.9391± 0.0335# 0.9683± 0.0183# 0.6911± 0.0729#

aPaired t-tests were used to evaluate if differences were significant;
a* and # indicate p-value < 0.05 and p-value < 0.001.

4.3. Discussion on the complexity of the network and memory usage

Table 1 shows Time/Vol which is a measure of the inference time for each architecture. This
is a measure of the network complexity as a more complicated network will require a longer
inference time. However, architectures such as 3D U-Net need to be assessed not only based on
their complexity but also on their memory usage during training and inference.

To measure the memory usage of each architecture, we calculated the number of the parameters
computed during training or inference. Table 5 shows the number of the features and the trainable
parameters for each architecture. Features refer to the output of the filters, while trainable
parameters refer to the architecture’s parameters. Complexity of the network is determined by



Research Article Vol. 12, No. 12 / 1 Dec 2021 / Biomedical Optics Express 7358

Table 4. Results for Volumetric Choroidal Segmentation for
Intermediate Choroids.a

Method IoU Dice SSIM

SA-Net 0.9589± 0.0347 0.9790± 0.0186 0.7455± 0.1440

2D U-Net 0.9514± 0.0176# 0.9750± 0.0094# 0.7093± 0.0798#

3D U-Net 0.9448± 0.0281# 0.9716± 0.0151# 0.7136± 0.1203#

BC U-Net 0.9554± 0.0229# 0.9770± 0.0126# 0.7450± 0.0669*

Sensor3D 0.9558± 0.0453* 0.9773± 0.0248* 0.7175± 0.1522#

aPaired t-tests were used to evaluate if differences were significant;
a* and # indicate p-value < 0.05 and p-value < 0.001.

trainable parameters. Networks such as 2D U-Net and 3D U-Net have low complexity, while BC
U-Net and Sensor3D have highly complex architectures.

Table 5. Number of Element of the Features and the Trainable
Parameters.

Method Features (×106) Parameters (×106) Total Parameters (×106)

SA-Net 46.94 5.5 52.44

2D U-Net 18.46 1.87 20.43

3D U-Net 772.34 5.89 778.23

BC U-Net 57.85 10.35 68.20

Sensor3D 90.52 10.36 100.88

3D U-Net has a very large number of features compared to other architectures. This results
in large memory requirements, which is a major limitation in the use of 3D U-Net. In contrast,
although 2D U-Net has much fewer features, our results show that it does not perform as well
in volumetric segmentation as compared to the other architectures, that incorporate spatial
information. Compared to the other architectures, SA-Net has a faster inference time and fewer
parameters.

5. Conclusion

Spatial information can provide useful context for volumetric segmentation. Our proposed
architecture, SA-Net incorporates spatial information from corresponding adjacent slices to
explicitly integrate spatial correspondences. We compared SA-Net with other recent approaches
for segmenting the choroid in volumetric OCT images on a high myopia dataset, and demonstrated
that SA-Net outperformed the other approaches in segmentation accuracy and quality of the
generated choroidal thickness map, with lesser complexity and memory usage. The analysis
across various choroid thicknesses also showed that SA-Net performed particularly well for
challenging thin choroids. Our results show that SA-Net could be used for efficient and accurate
segmentation of OCT data, and can be useful for monitoring choroidal changes in highly myopic
eyes. SA-Net could also be potentially applied to other types of volumetric medical images.
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